Starter quiz

  • Trigonometric functions are commonly defined as ratios of two sides of a right-angled triangle for a given angle. Select the trigonometric functions.
    • Sine  ✓
    • Cosine  ✓
    • Tangent  ✓
    • Pythagoras' theorem
    • Reciprocal
  • What functions do we use to find a missing angle when provided with two sides in a right-angled triangle?
    • arccos  ✓
    • arctan  ✓
    • arcsin  ✓
    • (\cos(\theta°))^{-1}
    • (\sin(\theta°))^{-1}
  • Which of the following calculations will calculate the answer to the length <Math>e</Math>?
    Which of the following calculations will calculate the answer to the length e?
    • e =\frac{\text{9}}{\cos(52°)}  ✓
    • e =\frac{\text{9}}{\sin(38°)}  ✓
    • e =\frac{\sin(38°)}{\text{9}}
    • e =\frac{\cos(52°)}{\text{9}}
  • Which of the following are equivalent to \cos(\theta°)=\frac{\text{adj}}{\text{hyp}}?
    • \theta°=\arccos\left(\frac{\text{adj}}{\text{hyp}}\right)  ✓
    • \text{hyp}\times\cos(\theta°)=\text{adj}  ✓
    • \text{hyp}=\frac{\text{adj}}{\cos(\theta°)}  ✓
    • \cos(\theta°)=\frac{\text{hyp}}{\text{adj}}
  • Which of the following are equivalent to \tan(\theta°)=\frac{\text{opp}}{\text{adj}}?
    • \text{adj}\times\tan(\theta°)=\text{opp}  ✓
    • \tan(\theta°)=\frac{\text{adj}}{\text{opp}}
    • \text{adj}=\frac{\text{opp}}{\tan(\theta°)}  ✓
    • \theta°=\arctan\left(\frac{\text{opp}}{\text{adj}}\right)  ✓
  • Which of the following are equivalent to \sin(\theta°)=\frac{\text{opp}}{\text{hyp}}?
    • \text{hyp}=\frac{\sin(\theta°)}{\text{opp}}
    • \theta°=\arcsin\left(\frac{\text{opp}}{\text{hyp}}\right)  ✓
    • \text{hyp}=\frac{\text{opp}}{\sin(\theta°)}  ✓
    • \text{hyp}\times\sin(\theta°)=\text{opp}  ✓
+