Starter quiz
- In a right triangle, if the hypotenuse is 37.5 cm and a second side is 30 cm, what is the length of the third side? (Use a calculator to help you.)
- 22.5 cm ✓
- 34 cm
- 25 cm
-
- Which of the following statements is true for these triangles?
- The triangles are similar. ✓
- The triangles are not similar.
- It is not possible to know whether the triangles are similar or not.
-
- An isosceles triangle has an internal angle of 50ᵒ, what might the other two angles be?
- 50ᵒ, 80ᵒ ✓
- 65ᵒ, 65ᵒ ✓
- 50ᵒ, 65ᵒ
-
- In a right triangle, if the shortest sides are 36 cm and 48 cm, what is the length of the hypotenuse? (Use a calculator to help you.)
- 65 cm
- 60 cm ✓
- 62 cm
-
- Would a triangle ABC with sides AB = 10cm, BC = 7.5cm, AC = 12.5cm be similar to the one shown in the diagram?
- Yes ✓
- No
-
- For this pair of triangles, can you determine whether they are similar without using side lengths?
- Yes, because their three angles correspond. ✓
- No because you only know two angles.
- No, because you always need a side and two angles.
-
Exit quiz
- What is the value of θ for sin(θ) = 1?
- 90ᵒ ✓
- 45ᵒ
- 50ᵒ
- 30ᵒ
-
- What is the value of θ for tan(θ) = 1?
- 45ᵒ ✓
- 90ᵒ
- 30ᵒ
- 0ᵒ
-
- What is the value of θ for cos(θ) = 0?
- 90ᵒ ✓
- 45ᵒ
- 30ᵒ
- 0ᵒ
-
- What is the value of θ for sin(θ) = cos(θ)?
- 45ᵒ ✓
- 90ᵒ
- 30ᵒ
- 0ᵒ
-
- What is the value of θ for sin(θ) = tan(θ)?
- 0ᵒ ✓
- 45ᵒ
- 90ᵒ
-
- What is cos(60ᵒ)?
- 0.5 ✓
- 0.1
- 0
- 1
-
Worksheet
Presentation
Lesson Details
Key learning points
- The unit circle is a circle with a radius of one.
- The unit circle is centered on the origin.
- The sine of an angle is the y-coordinate of the point where the radius has been rotated through that angle.
- The cosine of an angle is the x-coordinate of the point where the radius has been rotated through that angle.
- The tangent of an angle is the length of the side opposite the angle along the tangent at x = 1 to the unit circle.
Common misconception
When reading the values of the trigonometric functions during the explanation slides and the tasks, pupils may think that all the values taken from the graphs are fully accurate.
Explain that many of the values from the trigonometric functions have digits beyond the second decimal place. However, two decimal places is a reasonable degree of accuracy for reading values from the graphs during this lesson.
Keywords
Trigonometric functions - Trigonometric functions are commonly defined as ratios of two sides of a right-angled triangle for a given angle.
Sine function - The sine of an angle (sin(θ°)) is the y-coordinate of point P on the triangle formed inside the unit circle.
Cosine function - The cosine of an angle (cos(θ°)) is the x-coordinate of point P on the triangle formed inside the unit circle.
Tangent function - The tangent of an angle (tan(θ°)) is the y-coordinate of point Q on the triangle which extends from the unit circle.